# High Yield Syntheses of Stable, Singly Bonded $\mathrm{Pd}_{2}{ }^{6+}$ Compounds 

F. Albert Cotton, ${ }^{\star, \dagger}$ Igor O. Koshevoy, $\ddagger$ Pascual Lahuerta, ${ }^{\star, \ddagger}$ Carlos A. Murillo,*, $\dagger$ Mercedes Sanaú, $\ddagger$ M. Angeles Ubeda, ${ }^{*, \ddagger}$ and Qinliang Zhao ${ }^{\dagger}$<br>Department of Chemistry, Laboratory for Molecular Structure and Bonding, P.O. Box 30012, Texas A\&M<br>University, College Station, Texas 77842-3012, and Departamento de Química Inorgánica, Facultad de Química, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain

Received August 12, 2006; E-mail: cotton@tamu.edu; murillo@tamu.edu; pascual.lahuerta@uv.es; angeles.ubeda@uv.es

Compounds with metal-metal bonds have grown in number and importance since the discovery of $\mathrm{Re}_{2} \mathrm{Cl}_{8}{ }^{2-}$ ion nearly 40 years ago. ${ }^{1}$ There are now thousands of derivatives, ${ }^{2}$ with the most prominent structural motif being that of the paddlewheel in which a metal-metal bonded unit, $\mathrm{M}_{2}{ }^{n+}$, is surrounded by eight equatorially bonded atoms and sometimes two axial groups. In many of these molecules the symmetry is roughly $D_{4 h}$ or a variation thereof. Some of these compounds have useful applications, for example, those having singly bonded $\mathrm{Rh}_{2}{ }^{4+}$ and $\mathrm{Pt}_{2}{ }^{6+}$ units which have been extensively used in catalysis ${ }^{3}$ and medicine. ${ }^{4}$ Mixed valence species, such as those in the platinum blues, have also been widely studied. ${ }^{5}$ Even though there are known paddlewheel compounds for most of the transition elements, very little is known about analogues of $\mathrm{Pt}_{2}{ }^{6+}$ in group 10. Indeed, there is only one compound spectroscopically characterized with a proposed $\mathrm{Ni}_{2}{ }^{6+}$ core ${ }^{6}$ and only one structurally characterized compound containing a $\mathrm{Pd}_{2}{ }^{6+}$ core, namely $\mathrm{Pd}_{2}(\mathrm{hpp})_{4}{ }^{-}$ $\mathrm{Cl}_{2}$ (hpp $=$ the anion of $1,3,4,6,7,8$-hexahydro- 2 H -pyrimido[1,2a]pyrimidine). ${ }^{7}$ The $\mathrm{Pd}_{2}{ }^{4+}$ precursor contains no metal-metal bond because of the $\mathrm{d}^{8}$ configuration of the $\mathrm{Pd}($ II $)$ atoms, which in a paddlewheel compound will give rise to a $\sigma^{2} \pi^{4} \delta^{2} \sigma^{* 2} \pi^{* 4} \delta^{* 2}$ configuration with a bond order of zero. The compound $\mathrm{Pd}_{2}(\mathrm{hpp})_{4^{-}}$ $\mathrm{Cl}_{2}$ was prepared in low yield and mixed with other compounds. Because the crystals had to be manually separated from other solids, progress in development of the $\mathrm{Pd}_{2}{ }^{6+}$ chemistry using this compound has been hampered.

Here we report high yield syntheses of very pure paddlewheel compounds having $\mathrm{Pd}-\mathrm{Pd}$ single bonds and the general formula cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2} \mathrm{Cl}_{2}$ with $\mathrm{R}=\mathrm{CH}_{3}$ (1), $\mathrm{CF}_{3}$ (2), and $\mathrm{CMe}_{3}(\mathbf{3}),{ }^{8}$ obtained by oxidation of the corresponding cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}$ compounds ${ }^{9}$ with $\mathrm{PhI} \cdot \mathrm{Cl}_{2} .{ }^{10}$ Compounds $\mathbf{1}$ and $\mathbf{3}$ are stable in solutions of chlorinated solvents for over 48 h , and crystals may be stored for weeks at ambient temperature and in air without apparent decomposition. However, 2 slowly decomposes in solution and as a solid at ambient temperature. It appears that the electron donating ability by the carboxylate substituents has an important impact in stabilizing the products, and it should be noted that it was not possible to oxidize cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}$. All compounds are diamagnetic as shown by sharp singlets at $-13.8,-8.8$, and -14.0 ppm in the ${ }^{31} \mathrm{P}$ NMR spectra for $\mathbf{1}, \mathbf{2}$, and 3, respectively, and by the position of the signals in the ${ }^{1} \mathrm{H}$ NMR spectra which are in the expected region for orthometalated phosphines bridging a dinuclear unit. ${ }^{11}$

The structures of $\mathbf{2}$ and $\mathbf{3}$ show a $\mathrm{Pd}_{2}{ }^{6+}$ unit bridged by two carboxylate groups and cisoid orthometalated phosphine ligands in a head-to-tail arrangement. There are also two chloride groups in axial positions, as shown in Figure 1 for 3. There is a twist in the orthometalated ligands; the molecules are chiral but crystals

[^0]

Figure 1. The structure of $\mathbf{3}$ with displacement ellipsoids drawn at the $40 \%$ probability level. Hydrogen atoms are not shown.
are racemic. For both $\mathbf{2}$ and $\mathbf{3}$ the $\mathrm{Pd}-\mathrm{Pd}$ distances (2.5434(4) and $2.5241(9) \AA$, respectively) are much shorter than those in the precursors ${ }^{9}$ (2.7229(8) and 2.6778(15) $\AA$, respectively) but longer than that in the only known compound with a $\mathrm{Pd}_{2}{ }^{6+}$ unit, $\mathrm{Pd}_{2}(\mathrm{hpp})_{4^{-}}$ $\mathrm{Cl}_{2}(2.391(2) \AA)$. The latter has guanidinate ligands which are known for the high electron donating ability.

Because the shortened $\mathrm{Pd}-\mathrm{Pd}$ distances and the diamagnetism of $\mathbf{1}-\mathbf{3}$ suggest the presence of a $\mathrm{Pd}-\mathrm{Pd}$ single bond, the electronic properties and the nature of the $\mathrm{Pd}-\mathrm{Pd}$ interaction were probed with hybrid $\mathrm{HF} / \mathrm{DFT}$ calculations on the simplified model cis$\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} \mathrm{Cl}_{2}$ having $C_{2}$ symmetry. The calculations favored the singlet state by $19.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

As shown in Tables 1 and S2, the optimized geometry of the singlet state resulted in good agreement with the experimental values. The calculated Pd-Pd distance ( $2.611 \AA$ ) is overestimated but by only $0.068 \AA$ relative to that in 2 . The very large HOMO/ LUMO gap of $2.54 \mathrm{eV}\left(58.6 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$ accounts for the observed diamagnetism. As shown in Figure 2, the HOMO originates from the direct overlap of two lobes of the $\mathrm{d}_{z}{ }^{2}$ orbitals that provides a significant accumulation of electron density along the metal-metal bond, whereas the LUMO is the antibonding interaction of these two $\mathrm{d}_{z}{ }^{2}$ orbitals. Accordingly, there is a single bond between these two palladium atoms, and the electronic configuration of $\sigma^{2} \pi^{4} \delta^{2} \delta^{* 2} \pi^{* 4}$ may be assigned to the $\mathrm{Pd}_{2}{ }^{6+}$ unit. This is similar to what was calculated using a Hartree-Fock self-consistent field method for $\mathrm{Pd}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}$. ${ }^{7}$

Since the interaction between the $\mathrm{d}_{z}{ }^{2}$ orbitals of the palladium atoms and the $p_{z}$ orbitals from the axial chloride atoms is antibonding in character, the effect of the axial $\mathrm{Cl}^{-}$ions on the $\mathrm{Pd}_{2}$ unit was explored by DFT calculations, and a fragment analysis were performed on both cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} \mathrm{Cl}_{2}$ and [cis$\left.\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\right]^{2+}$ models. The results (Tables 1 and S 2 ) show that the axial Cl atoms do influence other bonding distances, but their effect on the $\mathrm{Pd}-\mathrm{Pd}$ bond appears to be most significant when compared to the model devoid of axial interactions. The calculations for this model show very short $\mathrm{Pd}-\mathrm{Pd}$ bond distances. These are shorter by ca. $0.1 \AA$ than those in the model with axial chloride ligands. The reason for the elongation of the $\mathrm{Pd}-\mathrm{Pd}$ bond

Table 1. Experimental and Calculated Bond Parameters (Å and deg)

| spin | $2 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 3 | cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} \mathrm{Cl}_{2}$ |  | $\frac{\left[\mathrm{cis}-\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\right]^{2+}}{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | 1 |  |
| energy (au) |  |  | -2856.762 | -2856.732 | -1935.682 |
| $\mathrm{Pd}-\mathrm{Pd}$ | 2.5434(4) | 2.5241(9) | 2.611 | 2.816 | 2.493 |
| $\mathrm{Pd}-\mathrm{P}(1)$ | 2.2511(11) | 2.2621(19) | 2.293 | 2.330 | 2.356 |
| $\mathrm{Pd}-\mathrm{O}(1)$ | 2.140 (3) | 2.103(4) | 2.130 | 2.134 | 2.108 |
| $\mathrm{Pd}-\mathrm{C}(1)$ | 2.021(4) | 2.028(7) | 2.063 | 2.041 | 2.029 |
| $\mathrm{Pd}-\mathrm{Cl}$ | 2.4144(11) | 2.4262(18) | 2.510 | 2.569 |  |



Figure 2. Frontier orbital plot of the HOMO (left) and the LUMO (right) for the model cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} \mathrm{Cl}_{2}$ showing the $\mathrm{Pd}-\mathrm{Pd}$ single bond along the $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Pd}-\mathrm{Cl}$ unit. Both are antibonding with respect to the $\mathrm{Pd}-\mathrm{Cl}$ interaction. Positive and negative contours are in yellow and blue, respectively. Orbitals are drawn using an isosurface value of 0.04 .
by axial Cl interactions is similar to that in $\mathrm{W}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}$ compounds described recently, ${ }^{12}$ and is due to metal-based $\sigma$ interactions that are perturbed by the $\mathrm{p} \sigma$ orbitals of the $\mathrm{Cl}^{-}$ions. This is shown in more detail elsewhere because of space limitations in a communication (see Supporting Information).

A time-dependent DFT calculation on the optimized geometry of the dication cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} \mathrm{Cl}_{2}$ allowed the assignment of the low-energy transitions in $\mathbf{1}$ and $\mathbf{3}$. The absorptions at ca. 500 nm correspond to the HOMO-LUMO transition (calcd at $488 \mathrm{~nm}, f=0.0657$ ) and the relatively strong absorption at about $381 \mathrm{~nm}\left(\epsilon=2.0 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$ for 3 ) to a LMCT transition (calcd at $431 \mathrm{~nm}, f=0.2458$ ).

In conclusion, a general method has been found for the syntheses of singly bonded $\mathrm{Pd}_{2}{ }^{6+}$ compounds having the formula $R, S$-cis$\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2} \mathrm{Cl}_{2}$. When the alkyl group in the carboxylate ligands is an electron donor, the compounds are stable. Such stability opens the way for exploration of the chemistry of these rare $\mathrm{Pd}^{3+}$ compounds. ${ }^{13}$ Of special interest will be the resolution of the optical isomers and production of supramolecular entities by replacement of the labile carboxylate ligands in a similar way as the Rh analogues ${ }^{11}$ and exploration of possible catalytic potential, such as that in $\mathrm{Pt}_{2}{ }^{6+}$ compounds. ${ }^{3 \mathrm{~b}}$

Acknowledgment. At TAMU we thank the Robert A. Welch Foundation and Texas A\&M University for financial support. At UV we thank MEC of Spain (Project NO. CTQ2005-08351) for financial assistance and a grant to I.O.K. We also thank Dr. F. Estevan for help with some experiments and Dino Villagrán for helpful discussions on DFT and the Laboratory for Molecular Simulation at TAMU for software.

Supporting Information Available: X-ray crystallographic data for $\mathbf{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{3}$ in CIF format and synthetic and experimental procedures, characterization data, an ellipsoid plot of 2, additional
discussion on the effect of the axial Cl atoms on the $\mathrm{Pd}-\mathrm{Pd}$ distance and DFT results on the precursors. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) (a) Robinson, W. T.; Fergusson, J. E.; Penfold, B. R. Proc. Chem. Soc., London 1963, 116. (b) Bertrand, J. A.; Dollase, W. A.; Cotton, F. A. J. Am. Chem. Soc. 1963, 85, 1349.
(2) Cotton, F. A., Murillo, C. A., Walton, R. A., Eds.; Multiple Bonds between Metal Atoms, 3rd ed.; Springer Science and Business Media, Inc.: New York, 2005.
(3) (a) For $\mathrm{Rh}_{2}$ compounds see for example: Doyle, M. P.; Ren, T. Prog. Inorg. Chem. 2001, 49, 113. (b) For $\mathrm{Pt}_{2}$ compounds see for example: Matsumoto, K.; Ochiai, M. Coord. Chem. Rev. 2002, 231, 229.
(4) See for example: (a) Chifotides, H. T.; Dunbar, K. R. Acc. Chem. Res. 2005, 38, 146. (b) Matsumoto, K. In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug; Lippert, B., Ed. Wiley-VCH: Weinheim, Germany, 1999; p 455.
(5) See for example: (a) Barton, J. K.; Szalda, D. J.; Rabinowitz, H. N.; Waszczak, J. V.; Lippard, S. J. J. Am. Chem. Soc. 1979, 101, 1434. (b) Lippert, B. Coord. Chem. Rev. 1999, 182, 263 and references therein.
(6) Berry, J. F.; Bothe, E.; Cotton, F. A.; Ibragimov. S. A.; Murillo, C. A.; Villagrán, D.; Wang, X. Inorg. Chem. 2006, 45, 4396.
(7) Cotton, F. A.; Gu, J.; Murillo, C. A.; Timmons, D. J. J. Am. Chem. Soc. 1998, 120, 13280.
(8) The compounds were synthesized as follows: A sample of the corresponding cis- $\mathrm{Pd}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}$ compound ( 0.042 mmol ) was suspended in 6 mL of diethyl ether and then cooled to $-10^{\circ} \mathrm{C}$. A slight excess of $\mathrm{PhI} \cdot \mathrm{Cl}_{2}$ ( $13 \mathrm{mg}, 0.055 \mathrm{mmol}$ ) in 1 mL of acetonitrile was added dropwise over a period of 5 min to the yellow suspension while the mixture was under stirring. The color changed from yellow to red. The reaction mixture was stirred at about $-5^{\circ} \mathrm{C}$ for 1 h . The pale red-orange solution was decanted off and the red precipitate was washed $(3 \times 3 \mathrm{~mL})$ with a $5: 1 \mathrm{v} / \mathrm{v}$ mixture of diethyl ether/acetonitrile and then dried to give the products in high yield (1,90\%; 2, 78\%; 3, 96\%). (For 1) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right):-13.8(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right): 8.22(\mathrm{~m}, 2 \mathrm{H}), 7.74$ $(\mathrm{m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$. For characterization data for $\mathbf{2}$ and $\mathbf{3}$ see Supporting Information.
(9) Koshevoy, I. O.; Lahuerta, P.; Sanaú, M.; Ubeda, M. A. J. Chem. Soc., Dalton Trans. Accepted.
(10) Lucas, H. J.; Kennedy, E. R. Org. Synth. 1942, 22, 69.
(11) See for example: Cotton, F. A.; Murillo, C. A.; Stiriba, S.-E.; Wang, X.; Yu. R. Inorg. Chem. 2005, 44, 8223 and references therein.
(12) Cotton, F. A.; Donahue, J. P.; Gruhn, N. E.; Lichtenberger, D. L.; Murillo, C. A.; Timmons, D. J.; Dorn, L. O.; Villagrán, D.; Wang, X. Inorg. Chem. 2006, 45, 201.
(13) The compound $\mathrm{Pd}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}$ (see ref 7) is one of a only a handful containing authentic $\mathrm{Pd}^{\mathrm{II}}$ species. See (a) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; John Wiley \& Sons: New York, 1999. (b) Jasper, Jr. S. A.; Huffman, J. C.; Todd, L. J. Inorg. Chem. 1998, 37, 6060 and references therein. (c) Blake, A. J.; Holder, A. J.; Hyde, T. I.; Roberts, Y. V.; Lavery, A. J.; Schröder, M. J. Organomet. Chem. 1987, 323, 261. (d) McAuley, A.; Whitcombe, T. W. Inorg. Chem. 1988, 27, 3090. (e) Yamashita, M.; Miya, S.; Kawashima, T.; Manabe, T.; Sonoyama, T.; Kitagawa, H.; Mitani, T.; Okamoto, H.; Ikeda, R. J. Am. Chem. Soc. 1999, 121, 2321. (f) Blake, A. J.; Holder, A. J.; Hyde, T. I.; Schröder, M. J. Chem. Soc., Chem. Commun. 1987, 987. (g) Blake, A. J.; Gordon, L. M.; Holder, A. J.; Hyde, T. I.; Reid, G.; Schröder, J. Chem. Soc., Chem. Commun. 1988, 1452. (h) Blake, A. J.; Reid, G.; Schröder, M. J. Chem. Soc., Dalton Trans. 1990, 3363.

## JA0656595


[^0]:    $\dagger$ Texas A\&M University.
    $\ddagger$ Universitat de Valencia.

